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Since the relationship is known in advance, students would be able to
control their grade by choosing their study time appropriately. In fact, if
the exact relationship were known in advance, taking the test would be
necessary only as an intellectual exercise, since the grade would already
be determined by the time studied and the model. Admittedly, there is no
model that can precisely predict a test score solely on the basis of time
studied; since there are many other variables that affect test scores. But

- suppose a model were available which, although imperfect, fairly reliably

- predicted test scores based on hours studied.

Test Score=45+3.8(Hours of Study Time)+Error

~ The new model introduces the error term. Now, if someone studies 10
hours, the model would predict

Test Score=45+3.8(10)+Error=83+Error.

Oct 18-10:14 AM

The predicted test score would still be 83, but there is an
unknown random error associated with the prediction. If the
error is reasonably small (say, at most 5 points), then the
prediction will still be useful for planning purposes. But if the
error is too large, then it will be difficult to rely on the model's
predictions. If a model admits the possibility of an error, then
gauging the expected magnitude of the error is essential in
determining the model's usefulness. Estimating the mean and
variance of the errors will be an important part of determining
model utility. A model with a mean error of zero and small
variation in the error terms would be desirable and should yield
useful predictions. The model we have been using is simple. If
two variables appear to be related in a straight line manner, we
can use a simple linear regression model to describe their
relationship.
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The model-building process begins with a desire to find a
relationship between two or more variables. Since there are a great
number of possible models that can be selected, choosing the type of
model to represent the relationship is a complex problem.

A straight line is the simplest relationship between two variables.
This straight line relationship is modeled by the simple linear
regression model given by the following linear equation.
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Together, the slope and the intercept are called the parameters of the linear
equation. That is, they completely define the equation of the line.

| Developing a model to fit real world measurements is not trivial. Nature
doesn't cooperate by requiring all relationships to be straight lines.
- Seldom, in fact, do pairs of measurements fall on perfectly straight lines.

If a linear relationship exists, the data will have some general tendency to
~ move together or in opposite directions, as in Figure 5.15. In later sections
~ we will look at ways of measuring the degree of linear relationship
between two variables as well as defining the exact parameters (slope and
intercept) of a line for a specific set of data.
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Measuring the Degree of Linear Relationship: The Correlation
- Coefficient

A scatter diagram is a useful exploratory tool for detecting relationships

- between two variables. Eventually, however, a researcher will want to

~ know the strength of the relatlonshlp between the two variables. Karl

Pearson developed a measure in 1896 called the correlation coefficient, r,
- to measure the degree of linear relationship

Formula. Cormrelation Coefficient

The comelation coefficient 15 an index pumber nsed to snmmanzs the strength of a linear relationship

1
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Formuds Comrelabon Costhicent
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‘Within the parentheses, there are two familiar expressions:

¥y
Sy

which is a z-score that
shows how far y
deviates from its mean
measured in standard
deviation units (sy is
the standard deviation
of y)

which is a z-score that
shows how far x
deviates from its mean
measured in standard
deviation units (sx is
the standard deviation
of x)

Summing the products of these deviation measures for each data pair determines
the sign of the correlation coefficient.
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Formula Computatioral Formula for the Correlation Coefficient

The computational farmuls for the conelation coefficient is as follows
oS (Lo} (v
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To turn the DiagnosticOn:

Press [2nd] [0] [x-1] to access the CATALOG and jump to the
"D" section of the commands.

Press the [Down Arrow] until you reach DiagnosticOn.
Enter.

Compute a regression, for example LinReg(a+bx), and the
values for r and r* will be displayed.
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Given the large magnitude of r, one can say that there is a strong, positive, linear
relationship between the age of the vehicle and the annual maintenance cost. That
is, as the vehicle gets older, one can expect to spend more money on annual
maintenance.
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| Properties of the Correlation Coefficient
|

Ths leads 12 the foliowang propenes of the comelation coefficient

Properties
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Avoiding Some Correlation Pitfalls

' A high correlation does not imply causation. Suppose that a
high correlation has been observed between the weekly sales of
ice cream and the number of snake bites each week. It seems
unlikely that ice cream sales would cause snakes to bite people
or that more snake bites would cause higher ice cream sales. Yet
when the data are analyzed, you may find an unexpectedly high
correlation. If the two variables aren't actually related, what

- could explain such an observed relationship?

 The apparent relationship is an illusion caused by a
phenomenon called common response. That is, both variables
are related to a third variable. In this case the high temperatures
in the summer cause increases in both ice cream sales and
reptile activity.

Oct 18-4.06 PM

Suppose there is good reason to believe that a causal relationship
exists between two variables, but when a correlation is performed
the value of the correlation is near zero, indicating no association.
Does the lack of correlation between the two variables prove no
relationship exists? There are several reasons two related variables
might not have a high correlation.

Figure 5 I8

A low correlation could mean that no linear relationship exists. In Figure 5.18 the
relationship between x and y is not a straight line. The correlation measure for
these points is going to be very close to zero. Yet, there does appear to be a very
strong relationship between x and y.

‘The kind of relationship exhibited by this data is called a quadratic relationship
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Sometimes unrelated variables are highly correlated. When this
occurs the variables are said to have a spurious correlation. For
example, over a short period of time daily car sales and the
number of penguins in Antarctica might be related. However, it
is doubtful that a significant change in the penguin population
will cause a change in car sales, or vice versa.
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