
Chapter 5 – Regression  
 
5.1 (a) The slope is 1.033. On average, highway 
mileage increases by 1.033 mpg for each 
additional 1 mpg change in city mileage. (b) 
The intercept is 6.785 mpg. This is the highway 
mileage for a nonexistent car that gets 0 mpg in 
the city. Although this interpretation is valid, 
such a prediction would be invalid, since 0 is 
outside the range of the data (this is 
extrapolation, which will be addressed later in 
the chapter). (c) For a car that gets 16 mpg in 
the city, we predict highway mileage to be 
6.785 + (1.033)(16) = 23.31 mpg. For a car that gets 28 mpg in the city, we predict highway 
mileage to be 6.785 + (1.033)(28) = 35.71 mpg. (d) The regression line passes through all 
the points of prediction. The plot was created by drawing a line through the two points (16, 
23.31) and (28, 35.71), corresponding to the city mileages and predicted highway mileages 
for the two cars described in (c).  
 
5.2 The equation is cigarettes = 48,000,000 – 0.178(new runners). 
 
5.3 (a) The slope is 1021. This means that for each year since 2000, forest loss averages 
about 1021 km2. (b) If we measured in square meters, the slope would be 1021 × 106 = 
1,021,000,000; a loss of 1 billion square meters per year (on average). In thousands of km2, 
the slope would be 1.021; a loss of a bit more than 1000 km2 per year (on average). 
 Note: The point of this exercise is that units matter a great deal in regression. All these 
slopes represent the same relationship. 
 

5.4 (a) 

 

x  = 30.280, 

 

sx  = 0.4296, 

 

y  = 2.4557, 

 

sy  = 0.1579, and r = −0.8914.                   b = 

 

r
sy

sx
 

= 0.1579

0.4296
( 0.8914)−  = −0.3276, and a = 

 

y − bx  = 2.4557 – (−0.3276)(30.280) = 12.3754.  The 

equation is 𝐶𝑜𝑟𝑎𝑙 𝑔𝑟𝑜𝑤𝑡ℎ� = 12.3754 − 0.3276(Celsius Temperature). (b) Software agrees 
with these values to three decimal places, since we rounded to the fourth decimal place 
(where values are rounded will affect these results). (c) The slope is −0.3276. This means 
that every increase of one degree Celsius means about 0.3276 fewer mean millimeters of 
coral growth per year. 
 
5.5 (a) The scatterplot (with the regression line) is shown. This relationship is certainly 
weak. (b) JMP output is shown. The regression equation is  
Suıcıde�  = 11.125 + 0.195(Homicide). (c) The slope means that for every suicide (per 
100,000 people), there are about 0.195 homicides (per 100,000 people) in these Ohio 
counties. (d) We would predict 11.125 + 0.195(8.0) = 12.685 suicides. 
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5.6 The 
farther r is 
from 0 (in 
either 
direction), 
the 
stronger 
the linear 
relationship is between two variables. In Exercise 

4.30, the relationship between SRD and DMS is very strongly linear, and a regression line 
should enable relatively more accurate prediction than a regression line for the golfers’ 
scores. 
 
5.7 (a) The scatterplot is provided, with the 
regression line. Regression gives 

 

ˆ y  = 1.0284 – 
0.004498x (see Minitab output). The plot 
suggests a slightly curved pattern, not a strong 
linear pattern. A regression line is not useful 
for making predictions. (b) r2 = 0.031. This 
confirms what we see in the graph: the 
regression line does a poor job summarizing 
the relationship between difference in begging 
intensity and growth rate. Only about 3% of 
the variation in growth rate is explained by the 
least-squares regression on difference in begging intensity.  
 
Minitab output 
The regression equation is Growth = 1.028 – 0.0045 Difference  
 
Predictor    Coef   Stdev t-ratio    P                                         
Constant   1.028409 0.039042  26.341  0.000                  
Difference  –0.004498 0.005808  –0.774  0.448 
 
s = 0.1704 R-Sq = 3.1% 
 
5.8 (a) The residuals are computed in the table using 

 

ˆ y  = 12.3754 − 0.3276x, as computed 
in Exercise 5.4.  (b) They sum to zero, except for rounding error. (c) From software, the 
correlation between x and 𝑦 – 𝑦� is 0.000025, which is zero except for rounding. 
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  x   y   

 

ˆ y     y – 

 

ˆ y  
 

29.68 2.63 2.652   −0.022                        
29.87  2.58   2.590    −0.010                        
30.16  2.60   2.495     0.105               
30.22  2.48   2.475     0.005                   
30.48  2.26   2.390    −0.130                  
30.65  2.38   2.335     0.045                     
30.90  2.26   2.253     0.007          
                0 
 
5.9 (a) Plot is provided following, left. (b) No; the pattern is curved, so linear regression is 
not appropriate for prediction. (c) For x = 10, we estimate 

 

ˆ y  = 11.058 – 0.01466(10) = 
10.91, so the residual is 21.00 – 10.91 = 10.09. The sum of the residuals is –0.01. (d) The 
first two and last four residuals are positive, and those in the middle are negative. Plot 
following, right. 

 
 
 
 
 
 
 
 
 
 
 

 
5.10 (a) The scatterplot with the line is shown below. (b) This looks like an excellent fit; all 
the data points are very close to the line, so predictions should be accurate. (c) The 
residuals plot is shown. This plot is clearly a curve that could not be seen in the original 
data. A linear model is not correct here. 
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5.11 (a) Any point that falls exactly on the regression line will not increase the sum of 
squared vertical distances (which the regression line minimizes). Thus the regression line 
does not change. Possible output is shown, below left. Any other line (even if it passes 
through this new point) will necessarily have a higher total sum of squared prediction 
errors. The correlation changes (increases) because the new point reduces the relative 
scatter about the regression line. (b) Influential points are those whose x-coordinates are 
outliers. The regression line will “follow” an influential point if it is moved up or down in 
the y direction. An example is provided, below right. 

 
 
 
 
 
 
 
 
 

 
5.12 (a) Point A lies above the other 
points; that is, the suicide rate is higher 
than we expect for the given homicide 
rate and is also an outlier in x. Point B 
lies to the right of the other points; it is 
an outlier in the x (homicide) direction, 
with a suicide rate more like the others. 
(b) In the plot, the regression lines for 
the original data and for the set 
including Point B are essentially 
identical. The solid line above that 
includes Point A; Point A is more 
influential than Point B.  
  



5.13 (a) In the plot, Hawaiian Airlines 
is the point identified with “H.” Since 
this point is an outlier and falls outside 
the x range of the other data points, it is 
influential, and will affect the 
regression line by “pulling” it. (b) With 
the outlier, r = –0.488. If the outlier is 
deleted from the data, r = –0.241. 
Notice that with the outlier, the 
correlation suggests a stronger linear 
relationship. (c) The two regression 
lines (one including the outlier, and the 
other without) are plotted. We see that the line based on the full data set (including the 
outlier) has been pulled down toward the outlier, indicating that the outlier is influential. 
Now, the regression line based on the complete (original) data set, including the outlier, is 

 

ˆ y  = 21.815 − 0.12851x. Using this, when x = 79.1, we predict 11.65% delays. The other 
regression line (fit without the outlier), is 

 

ˆ y  = 19.460 - 0.05528x, so our prediction would 
be 15.09% delays. The outlier impacts predictions because it impacts the regression line.  
 
5.14 The correlation between mean SAT scores is an ecological correlation. There is far 
more variability among individuals than among the averages. Correlation would be much 
smaller (i.e., closer to zero) if we calculated it based on scores for individual students. 
 
5.15 (a) The regression line is 

 

ˆ y  = −44.831 + 0.1323 x (or, Kills = −44.831 + 0.1323 Boats). 
(b) If 890,000 boats are registered, then by our scale, x = 890, and 

 

ˆ y  = –44.831 + 
(0.1323)(890) = 72.92 manatees killed. The prediction seems reasonable, as long as 
conditions remain the same, because “890” is within the space of observed values of x on 
which the regression line was based. That is, this is not extrapolation. (c) If x = 0 
(corresponding to no registered boats), then we would “predict” –44.831 manatees to be 
killed by boats. This is absurd, because it is clearly impossible for fewer than 0 manatees to 
be killed. This illustrates the folly of extrapolation… x = 0 is well outside the range of 
observed values of x on which the regression line was based. 
 
5.16 A student’s intelligence may be a lurking variable: stronger students (who are more 
likely to succeed when they get to college) are more likely to choose to take these math 
courses, while weaker students may avoid them. Other possible answers might be 
variations on this idea; for example, if we believe that success in college depends on a 
student’s self-confidence, and perhaps confident students are more likely to choose math 
courses. 
 
5.17 Possible lurking variables include the IQ and socioeconomic status of the mother, as 
well as the mother’s other habits (drinking, diet, etc.). These variables are associated with 
smoking in various ways, and are also predictive of a child’s IQ. 

Note: There may be an indirect cause-and-effect relationship at work here: some 
studies have found evidence that over time, smokers lose IQ points, perhaps due to brain 



damage caused by toxins from the smoke. So, perhaps smoking mothers gradually grow less 
smart and are less able to nurture their children’s cognitive development. 
 
5.18 Socioeconomic status is a possible lurking variable: children from upper-class families 
can more easily afford higher education, and they would typically have had better 
preparation for college as well. They may also have some advantages when seeking 
employment, and have more money should they want to start their own businesses. 
This could be compounded by racial distinctions: some minority groups receive worse 
educations than other groups, and prejudicial hiring practices may keep minorities out of 
higher-paying positions. It could also be that some causation goes the other way: people 
who are doing well in their jobs might be encouraged to pursue further education or their 
employers might pay for them to get further education. 
 
5.19 One example would be that men who are married, widowed, or divorced may be more 
“invested” in their careers than men who are single. There is still a feeling of societal 
pressure for a man to “provide” for his family. 
 
5.20 (b) 7.5. The regression line seems to pass through the point (110, 7.5). 
 
5.21 (b) 0.2. Consider two points on the regression line—say (90,4) and (130,11). The 

slope of the line segment connecting these points is 11 4

130 90

−

−
 = 7/40 = 0.175. 

5.22 (c) −3 
 
5.23 (a) y = 1000 + 100x 
 
5.24 (b) will be less than 0. As the number of packs increases, average age at death 
decreases. Correlation is negative, and so is the slope of the regression line. 
 
5.25 (c) 16 cubic feet 
 
5.26 (a) 405 cubic feet 
 
5.27 (a) The slope of the line is positive. 
 
5.28 (c) prediction of gas used from degree-days will be quite accurate. 
 
5.27 (a) 

 

ˆ y = 24.2 + 6.0x 
 
  



5.30 (a) The slope is 0.0138 minutes per 
meter. On the average, if the depth of the dive 
is increased by one meter, it adds 0.0138 
minutes (about 0.83 seconds) to the time spent 
underwater. (b) When D = 200, the regression 
formula estimates DD to be 5.45 minutes. (c) 
To plot the line, compute DD = 3.242 minutes 
when D = 40 meters, and DD = 6.83 minutes 
when D = 300 meters.  
 
 
5.31 (a) Since the slope is 3721.02, the least-squares regression line says that increasing 
the size of a diamond by 1 carat increases its price by 3721.02 Singapore dollars, on 
average. (b) A diamond of size 0 carats would have a predicted price of 259.63 Singapore 
dollars. This is probably an extrapolation, since the data set on which the line was 
constructed almost certainly had no rings with diamonds of size 0 carats. However, if the 
number is meaningful (dubious), then it refers to the cost of the gold content and other 
materials in the ring. 
 
5.32 (a) The regression equation is 

 

ˆ y  = −0.126 + 0.0608x. Each increase of one unit in 
social distress increases brain activity by about 0.0608 units. For x = 2.0, this formula gives   

 

ˆ y  = −0.0044. (A student who uses the more precise coefficient estimates listed under 
“Coef” in the Minitab output might report the predicted brain activity as −0.0045.) (b) This 
is given in the Minitab output as “R-Sq”: 77.1%. The linear relationship explains 77.1% of 
the variation in brain activity. (c) Knowing that r2 = 0.771, we find r = 

 

r2  = 0.878; the sign 
is positive because it has the same sign as the slope coefficient.  
 
5.33 (a) The regression equation is 

 

ˆ y  = 0.919 + 2.0647x. For every degree Celsius, the 
toucan will lose about 2.06% more heat through its beak. (b) 

 

ˆ y  = 0.919 + 2.0647(25) = 
52.5. At a temperature of 25 degrees Celsius, we predict a toucan to lose 52.5% more heat 
through its beak, on average. (c) Since R-Sq = 83.6%, 83.6% of the total variation in beak 
heat loss is explained by the straight-line relationship with temperature. (c) r = 

 

r2  = 
0.836  = 0.914. Correlation is positive here, since the least-squares regression line has a 

positive slope. 
 
5.34 Since we wish to regress husbands’ 
heights on wives’ heights, the women’s 
heights will be the x-values, and the men’s 
heights will be the y-values. (a) b = r sy / sx 
= (0.5)(3.1/2.7) = 0.574, and a = 

 

y − bx  = 
69.9 – (0.574)(64.3) = 32.99 inches. The 
regression equation is 

 

ˆ y  = 32.99 + 0.574x. 
For every inch of a wife’s height, her 
husband is about 0.574 inches taller. (b) If 
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a wife is 67 inches tall, we predict her husband to have height 

 

ˆ y  = 32.99 + (0.574)(67) = 
71.448 inches. The plot, with this pair identified, is provided. (c) We don’t expect this 
prediction to be very accurate because the heights of men having wives 67 inches tall 
varies a lot. Also, r2 = (0.5)2 = 0.25, so the linear regression explains only 25% of the 
variation in men’s heights. 
 

5.35 (a) b = r sy / sx = 

 

0.5( ) 8
40

 
 
 

 
 
  = 0.1, and a = 

 

y − bx  = 75 – (0.1)(280) = 47. The regression 

equation is 

 

ˆ y  = 47 + 0.1x. Each point of pre-exam total score means an additional 0.1 points 
on the final exam, on average. (b) Julie’s pre-final exam total was 300, so we would predict 
a final exam score of 

 

ˆ y  = 47 + (0.1)(300) = 77. (c) Julie is right; with a correlation of r = 0.5, 
r2 = (0.5)2 = 0.25, so the regression line accounts for only 25% of the variability in student 
final exam scores. That is, the regression line doesn’t predict final exam scores very well. 
Julie’s score could, indeed, be much higher or lower than the predicted 77. Since she is 
making this argument, one might guess that her score was, in fact, higher. Julie should visit 
the Dean. 
 
5.36 r = 0.16  = 0.40 (high attendance goes with high grades, so the correlation must be 
positive).  
 
5.37 (a) The regression equation is 

 

ˆ y  = 28.037 
+ 0.521x. r = 0.555. (b) The plot is provided. 
Based on Damien’s height of 70 inches, we 
predict his sister Tonya to have height 

 

ˆ y  = 
28.037 + (0.521)(70) = 64.5 inches (rounded). 
This prediction isn’t expected to be very 
accurate because the correlation isn’t very 
large; r2 = (0.555)2 = 0.308. The regression line 
explains only 30.8% of the variation in sister 
heights.  
 
5.38 (a) The scatterplot suggests that the 
relationship between absorbence and Nitrates 
is extremely linear. From software, r = 
0.99994 > 0.997, so the calibration does not 
need to be repeated. (b) From software, the 
equation of the least-squares regression line 
for predicting nitrates from absorbence is 

 

ˆ y  = 
–14.522 + 8.825x. The slope of the line tells us 
that for each additional 1 unit increase in 
absorbence, nitrates are expected to increase 
by 8.825 mg/L, on average. If the water sample has absorbence of 40, we predict Nitrate 
concentration of –14.522 + (8.825)(40) = 338.478 mg/L. (c) We expect estimates of nitrate 
concentration from absorbence to be very accurate since the linear regression explains 
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virtually all of the variation in nitrate concentration. That is, r2 = (0.99994)2 = 0.9999, or 
99.99% of the variation in nitrate concentration is explained by the regression on 
Absorbence.  
 
5.39 (a) The regression equation is 

 

ˆ y  = 
31.934 – 0.304x. (b) The slope (–0.304) 
tells us that, on the average, for each 
additional 1% increase in returning birds, 
the number of new birds joining the colony 
decreases by 0.304. (c) When x = 60, we 
predict 

 

ˆ y  =13.69 new birds will join the 
colony. 
 
 
Minitab output 
The regression equation is New = 31.93 – 0.3040PctRtn  
 
Predictor  Coef   Stdev t-ratio    p  
Constant  31.934   4.838   6.60  0.000  
PctRtn  -0.30402  0.0812  -3.74   0.003  
s= 3.667   R-sq=56.0%    R-sq(adj)=52.0%  
 
 
5.40 (a) Temp 6.87 0.0106Year.= − +  
(b) The slope indicates that global 
temperatures are increasing about 0.01°C 
per year. (c) We estimate 
−6.87+0.0106(2050) = 14.86°C. Because 
this is extrapolation, we should not have 
much faith in the estimate. 
 
 
 
 
5.41 (a) The outlier is in the upper-right 
corner. (b) With the outlier omitted, the 
regression line is 

 

ˆ y  = 0.586 + 0.00891x. (This 
is the solid line in the plot.) (c) The line does 
not change much because the outlier fits the 
pattern of the other points; r changes because 
the scatter (relative to the line) is greater with 
the outlier removed, and the outlier is located 
consistently with the linear pattern of the rest 
of the points. (d) The correlation changes from 
0.8486 (with all points) to 0.7015 (without the outlier). With all points included, the 
regression line is 

 

ˆ y  = 0.585 + 0.0879x (nearly indistinguishable from the other regression 
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line).  
 
Minitab output – all points 
The regression equation is Behave = 0.585 + 0.00879 Neural 
 
Predictor   Coef  SE Coef   T   P 
Constant  0.58496  0.07093 8.25 0.000 
Neural   0.008794 0.001465 6.00 0.000 

Minitab output – outlier removed 
The regression equation is Behave = 0.586 + 0.00891 Neural 
 
Predictor   Coef  SE Coef   T   P 
Constant  0.58581  0.07506 7.80 0.000 
Neural   0.008909 0.002510 3.55 0.004 

 
5.42 (a) To three decimal places, the correlations are all approximately 0.816 (for Set D, r 
actually rounds to 0.817), and the regression lines are all approximately

 

ˆ y  = 3.00 + 0.500x. 
For all four sets, we predict

 

ˆ y  = 8 when x = 10. (b) Plots below. (c) For set A, the use of the 
regression line seems to be reasonable—the data seem to have a moderate linear 
association (albeit with a fair amount of scatter). For set B, there is an obvious nonlinear 
relationship; we should fit a parabola or other curve. For set C, the point (13, 12.74) 
deviates from the (highly linear) pattern of the other points; if we can exclude it, the (new) 
regression formula would be very useful for prediction. For set D, the data point with x = 19 
is a very influential point—the other points alone give no indication of slope for the line. 
Seeing how widely scattered the y -coordinates of the other points are, we cannot place too 
much faith in the y -coordinate of the influential point; thus we cannot depend on the slope 
of the line, and so we cannot depend on the estimate when x = 10. (We also have no 
evidence as to whether or not a line is an appropriate model for this relationship.) 
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5.43 (a) The two unusual observations are 
indicated on the scatterplot. (b) The 
correlations are  
 r1 = 0.4819 (all observations)  
 r2 = 0.5684 (without Subject 15)  
 r3 = 0.3837 (without Subject 18) 
Both outliers change the correlation. Removing 
Subject 15 decreases r because its presence 
makes the scatterplot less linear. Removing 
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Subject 18 increases r because its presence decreases the relative scatter about the linear 
pattern.  
 
5.44 (a) 

 

ˆ y = 24.2 + 6.0x. (b)

 

ˆ y  = 24.2+ 0.6x. (c) When x = 0.7 mg, the first regression 
equation gives 

 

ˆ y  = 28.4% body fat. Using the second equation, with x = 7 mg,

 

ˆ y  = 28.4% 
body fat. These are the same (as they should be). 
 
5.45 The scatterplot with regression lines 
added is given. The equations are  
 

 

ˆ y  = 66.4 + 10.4x (all observations)  
 

 

ˆ y  = 69.5 + 8.92x (without #15)  
 

 

ˆ y  = 52.3 + 12.1x (without #18)  
While the equation changes in response to 
removing either subject, one could argue that 
neither one is particularly influential, because 
the line moves very little over the range of x 
(HbA) values. Subject 15 is an outlier in terms 
of its y-value; such points are typically not influential. Subject 18 is an outlier in terms of its 
x-value, but it is not particularly influential because it is consistent with the linear pattern 
suggested by the other points.  
 
5.46 The correlation would be much lower, because there is much greater variation in 
individuals than in the averages. The correlation in Exercise 4.25 was an ecological 
correlation, which obscures the variability in individuals. 
 
5.47 The correlation would be smaller. Individual weight will vary much more than the 
average weight for a given height. 
 
5.48 In this case, there may be a causative effect, but in the direction opposite to the one 
suggested: People who are overweight are more likely to be on diets, and so choose 
artificial sweeteners over sugar. (Also, heavier people are at a higher risk to develop Type 2 
diabetes; if they do, they are likely to switch to artificial sweeteners.)  
 
5.49 Responses will vary. For example, students who choose the online course might have 
more self-motivation or have better computer skills (which might be helpful in doing well 
in the class; e.g., such students might do better at researching course topics on the 
Internet). 
 
5.50 (a) The regression equation is MathSAT 616.6 0.00148(TeachSal).= − For each 
additional dollar of average teacher salary in a state, the average Math SAT score is 
expected to go down about 0.001 points. (b) This is unreasonable; the highest (and lowest) 
Math SAT averages correspond to states that pay teachers in the middle of the range 
(Illinois and Delaware). New York pays teachers the most and has a low average Math SAT 
score; it’s very expensive to live in New York. 
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Regression Analysis: MathSAT versus Avg. teacher salaries 2013  
 
The regression equation is 
MathSAT = 617 - 0.00148 Avg. teacher salaries 2013 
 
Predictor             Coef  SE Coef   T   P 
Constant            616.60   40.11 15.37 0.000 
Avg. teacher salaries 2013 -0.0014795 0.0007298 -2.03 0.048 
 
S = 43.9615  R-Sq = 7.7%  R-Sq(adj) = 5.9% 

 
5.51 (a) For states where more than 40% take the SAT, we have 
MathSAT 471.82 0.00048(TeachSal).= +  For these states, increasing the average teacher 

salary increases the mean Math SAT score by 0.00048 points, on average. (b) For states 
where less than 40% take the SAT, we have MathSAT 472.8 0.0020(TeachSal).= +  For these 
states, increasing the average teacher salary increases the mean Math SAT score by 0.0020 
points, on average. (c) The slopes here have opposite signs from that found in Exercise 
5.50. This is an example of Simpson’s paradox with continuous variables (although none of 
the relationships are particularly strong). Consideration of a third (lurking) variable 
changed the relationship. 
 
The regression equation is 
MathSAT = 472 + 0.000480 Avg.tchrsal2013 
 
Predictor       Coef  SE Coef  
Constant      471.82   26.15  
Avg.tchrsal2013 0.0004800 0.0004432 
   
S = 20.2536  R-Sq = 4.7%   

The regression equation is 
MathSAT = 473 + 0.00202 Avg.tchrsal2013 
 
Predictor      Coef  SE Coef    
Constant      472.80   55.37  
Avg.tchrsal2013 0.002022 0.001099  
 
S = 28.7808  R-Sq = 12.8% 

 
5.52 For example, a student who in the past might have received a grade of B (and a lower 
SAT score) now receives an A (but has a lower SAT score than an A student in the past). 
While this is a bit of an oversimplification, this means that today’s A students are 
yesterday’s A and B students, today’s B students are yesterday’s C students, and so on. 
Because of the grade inflation, we are not comparing students with equal abilities in the 
past and today. 
 
5.53 Here is a (relatively) simple example to show how this can happen: suppose that most 
workers are currently 30 to 50 years old; of course, some are older or younger than that, 
but this age group dominates. Suppose further that each worker’s current salary is his/her 
age (in thousands of dollars); for example, a 30-year-old worker is currently making 
$30,000. Over the next 10 years, all workers age, and their salaries increase. Suppose every 
worker’s salary increases by between $4000 and $8000. Then every worker will be making 
more money than he/she did 10 years before, but less money than a worker of that same 
age 10 years before.  During that time, a few workers will retire, and others will enter the 
workforce, but that large cluster that had been between the ages of 30 and 50 (now 
between 40 and 60) will bring up the overall median salary despite the changes in older 
and younger workers. 
 



5.54 We have slope b = r sy / sx , and intercept a = 

 

y − bx , and 

 

ˆ y  = a + bx. When x = 

 

x , 

 

ˆ y  = a 
+ b

 

x  = (

 

y – b

 

x ) + b

 

x  = 

 

y . 
 
5.55 For a player who shot 80 in the first round, we predict a second-round score of  

 

ˆ y  = 56.47 + (0.243)(80) = 75.91. For a player who shot 70 in the first round, we predict a 
second-round score of 

 

ˆ y  = 56.47 + (0.243)(70) = 73.48. Notice that the player who shot 80 
the first round (worse than average) is predicted to have a worse-than-average score the 
second round, but better than the first round. Similarly, the player who shot 70 the first 
round (better than average) is predicted to do better than average in the second round, but 
not as well (relatively) as in the first round. Both players are predicted to “regress” to the 
mean. 
 
5.56 Note that 

 

y  = 46.6 + 0.41

 

x . We predict that Octavio will score 4.1 points above the 
mean on the final exam: 

 

ˆ y  = 46.6 + 0.41(

 

x  + 10) = 46.6 + 0.41

 

x  + 4.1 = 

 

y  + 4.1. 
(Alternatively, because the slope is 0.41, we can observe that an increase of 10 points on 
the midterm yields an increase of 4.1 on the predicted final exam score.) 
 
5.57 See Exercise 4.41 for the three sample scatterplots. A regression line is appropriate 
only for the scatterplot of part (b). For the graph in (c), the point not in the vertical stack is 
very influential—the stacked points alone give no indication of slope for the line (if indeed 
a line is an appropriate model). If the stacked points are scattered, we cannot place too 
much faith in the y-coordinate of the influential point; thus we cannot depend on the slope 
of the line, and so we cannot depend on predictions made with the regression line. The 
curved relationship exhibited by the scatterplot in (d) clearly indicates that predictions 
based on a straight line are not appropriate. 
 
5.58 (a) Drawing the “best line” by eye is a very inaccurate process; few people choose the 
best line. (b) Most people tend to overestimate the slope for a scatterplot with r = 0.7; that 
is, most students will find that the least-squares line is less steep than the one they draw. 

 
 
 
 
 
 
 
 
 
 

  



5.59 PLAN: We construct a scatterplot (with 
beaver stumps as the explanatory variable), 
and if appropriate, find the regression line and 
correlation. SOLVE: The scatterplot shows a 
positive linear association. Regression seems 
to be an appropriate way to summarize the 
relationship; the regression line is ŷ = 
−1.286+11.89x. The straight-line relationship 
explains r2 =83.9% of the variation in beetle 
larvae. CONCLUDE: The strong positive 
association supports the idea that beavers 
benefit beetles.  
 
5.60 PLAN: We construct a scatterplot, with 
distance as the explanatory variable, using 
different symbols for the left and right hands, 
and (if appropriate) find separate regression 
lines for each hand. SOLVE: In the scatterplot, 
right-hand points are squares and left-hand 
points are circles. In general, the right-hand 
points lie below the left-hand points, meaning 
the right-hand times are shorter, so the subject 
is likely right-handed. There is no striking 
pattern for the left-hand points; the pattern for 
right-hand points is obscured because they are squeezed at the bottom of the plot. While 
neither plot looks particularly linear, we might nonetheless find the two regression lines: 
For the right hand,

 

ˆ y  = 99.36 + 0.0283x (r = 0.305, r2 = 9.3%), and for the left hand, 

 

ˆ y  = 
171.5 + 0.2619x (r = 0.318, r2 = 10.1%). CONCLUDE: Neither regression is particularly 
useful for prediction; distance accounts for only 9.3% (right) and 10.1% (left) of the 
variation in time.  
 
5.61 PLAN: We construct a scatterplot, with 
Forecast as the explanatory variable, and 
Actual as the response variable. If 
appropriate, we find the least-squares 
regression line. We consider the impact of 
the potential outlier (2005 season). SOLVE: 
The scatterplot shows a reasonable, but not 
very strong linear relationship between 
Forecast and Actual named storms. In 
recent years, it seems that there is no 
relationship between Forecast and Actual (a 
flat line). In the plot, the 2005 season is a noticeable outlier at the upper right. It is 
influential, pulling the regression line somewhat. We might consider deleting this point and 
fitting the line again. Deleting the point, we obtain the solid regression line, 

 

ˆ y  = 2.753 + 
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0.7964 Forecast when the original equation was 

 

ˆ y  = 1.668 + 0.920 Forecast. If the 
forecasts were perfect, the intercept of this line would be 0, and the slope would be 1, for 
reference. Deleting the 2005 season, r = 0.628, and r2 = 39.4%. Even after deleting the 
outlier, the regression line explains only 39.4% of variation in number of hurricanes. 
CONCLUDE: Predictions using the regression line are not very accurate. However, there is a 
positive association… so a forecast of many hurricanes may reasonably be expected to 
forebode a heavy season for hurricanes.  
 
5.62 PLAN: We plot the data, producing a time-
series plot. If appropriate, we consider fitting a 
regression line. SOLVE: The plot follows. We 
see that during the recent 10–15 years, the 
volume of discharge has become highly 
variable, but before then, the rate increased 
slowly, if at all. CONCLUDE: If there is a 
relationship between Year and Discharge, it 
isn’t strongly linear, and use of a regression line 
would not be useful to predict Discharge from 
Year.  
 
5.63 PLAN: We plot marathon times by year for each sex, using different symbols. If 
appropriate, we fit least-squares regression lines for predicting time from year for each 
gender. We then use these lines to guess when 
the times will concur. SOLVE: The scatterplot is 
provided below, with regression lines plotted. 
The regression lines are: 
 For men: 

 

ˆ y  = 66,072 – 29.535x 
 For women: 

 

ˆ y  = 182,976.15 – 87.73x 
Although the lines appear to fit the data 
reasonably well (and the regression line for 
women would fit better if we omitted the 
outlier associated with year 1926), this analysis 
is inviting you to extrapolate, which is never 
advisable. CONCLUDE: Using the regression lines plotted, we might expect women to 
“outrun” men by the year 2009. Omitting the outlier, the line for women would decrease 
more steeply, and the intersection would occur sooner, by 1995. We’ll note that as of 2014, 
this prediction has not happened. 
 
5.64 For the men, we have Time  =
52,852 – 22.725(Year); for the women, 
Time = 150,053 - 70.974(Year). When 

52,852 – 22.725(Year) = 150,053 - 
70.974(Year), the women will pass the 
men. Solving for Year, we have 
48.249(Year) = 97,201, and Year = 
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2014.57. Given that at this writing, we are in August 2014, this estimate is not reliable, but 
it is better than the estimate obtained in Exercise 5.63. 
 

5.65 – 5.67 are Web-based exercises. 
 
 
 


